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José A. Dı́az-Garćıa
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Abstract

In this paper we find the Jacobians of the transforms relating to matrix variate beta
types I and II in the singular case. We also study the joint density function of the
nonnull eigenvalues of matrix variate beta types I and II obtained from the singular
distribution, and the approach proposed by Khatri (1970).

Key words: Random matrices, matrix variate beta, singular distribution,
Hausdorff measure.
PACS: 62E15.

1 Introduction

The nonsingular matrix variate beta type I and II distributions for doubly
noncentral, noncentral and central cases are of great interest in multivariate
analysis and in shape theory, see Olkin and Rubin (1964), Khatri (1970),
Muirhead (1982), Cadet (1996), Gupta and Nagar (2000), Dı́az-Garćıa and
Gutiérrez-Jáimez (2001), Chikuse (1980) and Goodall and Mardia (1992).

Different relations have been described between matrix variate beta type I and
II distributions, according to whether they are central, noncentral or doubly
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noncentral, see Srivastava and Khatri (1979) and Gupta and Nagar (2000),
among many other authors. Moreover, as there exist various definitions for
each of these, and these definitions, in turn contain a subdivision, different
transforms from one type of beta distribution to another have been studied,
see Greenacre (1973), Roux (1975) and Gupta and Nagar (2000).

The study of singular distributions has been limited to a few recent papers,
and even fewer studies have been made of singular matrix variate beta dis-
tributions, see Khatri (1970), Uhlig (1994) and Dı́az-Garćıa and Gutiérrez
(1997). Thus, transforms from one type of beta distribution to another have
been little studied. This is mainly because in the singular case such distribu-
tions exist with respect to the Hausdorff measure, and not with respect to
the Lebesgue measure, as is the case with nonsingular distributions. As ob-
served by Billingsley (1986), the problem in determining the corresponding
Jacobians with respect to the Hausdorff measure is not a simple one. Interest
in this question has increased, with the appearance of studies in which these
singular distributions, and others, play an important role, both from the the-
oretical standpoint and from an applied one, see Ratnarajah and Vaillancourt
(2005) and Ratnarajah and Vaillancourt (2005).

In the present study, we examine the Jacobians relating to the central singular
matrix variate beta types I and II. Moreover, we study the equivalence between
the joint distributions of the nonnull eigenvalues of singular matrix variate beta
types I and II, obtained via singular distributions and applying the approach
proposed by Khatri (1970).

2 Jacobianos

For the singular case, note that if A and B have a central Pseudo-Wishart
and Wishart distribution, respectively, i.e. independent A ∼ PWm(r, I) and
B ∼ Wm(s, I), then the singular matrix beta type I U is defined as

U = (A + B)−1/2A((A + B)−1/2)′ (1)

where C1/2(C1/2)′ = C is a reasonable nonsingular factorization of C, see
Gupta and Nagar (2000), Srivastava and Khatri (1979) and Muirhead (1982);
and its density function is given by (see Dı́az-Garćıa and Gutiérrez (1997))

dFU(U) = c|L|(r−m−1)/2|Im − U |(s−m−1)/2(dU), 0 ≤ U < Im (2)

denoting as U ∼ BIm(q, r/2, s/2), s ≥ m; where U = H1LH ′
1, with H1 ∈

Vq,m; Vq,m = {H1 ∈ <m×q|H ′
1H1 = Iq} denotes the Stiefel manifold; L =
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diag(l1, . . . , lq), 1 > l1 > · · · > lq > 0; q = m (nonsingular case) or q = r < m
(singular case);

c =
π(−mr+rq)/2Γm[(r + s)/2]

Γq[r/2]Γm[s/2]
(3)

and (dU) denotes the Hausdorff measure on S+
m(q), the (mq − q(q − 1)/2)-

dimensional manifold of rank-q positive semidefinite m×m matrices U with q
distinct nonnull eigenvalues, given by (see Uhlig (1994) and Dı́az-Garćıa and
Gutiérrez (1997))

(dU) = 2−q
q∏

i=1

lm−q
i

∏

i<j

(li − lj)

( q∧

i=1

dli

)
∧ (H ′

1dH1), (4)

where (H ′
1dH1) denotes the invariant measure on Vq,m and where finality, Γm[a]

denotes the multivariate gamma function and is defined as

Γm[a] =
∫

R>0

etr(−R)|R|a−(m+1)/2(dR),

Re(a) > (m− 1)/2 and etr(·) ≡ exp(tr(·)).

In analogous fashion, the singular matrix variate beta type II is defined as

F = B−1/2A(B−1/2)′. (5)

This fact is denoted by F ∼ BIIm(q, r/2, s/2). Moreover, if F = H1GH ′
1, with

H1 ∈ Vq,m and G = diag(g1, . . . , gq); g1 > · · · > gq > 0, in this case the central
matrix variate beta type II density is given by (see Dı́az-Garćıa and Gutiérrez
(1997))

dGF (F ) = c|G|(r−m−1)/2|I + F |−(r+s)/2(dF ), F ≥ 0. (6)

where c is given by (3) and (dF ) is given in analogous form to (4).
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In the non-singular case, we have the following transforms to obtain the density
of F with respect to the distribution of U :

F =





(I − U)−1 − I

(U−1 − I)−1

(I − U)−1U

U(I − U)−1

U1/2(I − U)−1U1/2

(I − U)−1/2U(I − U)−1/2

(7)

This is obtained straightforwardly from the first expression, taking into ac-
count that F , U and (I − U) are symmetrical matrices. Similarly, the trans-
forms to obtain matrix U from matrix F are:

U =





I − (I + F )−1

(I + F−1)−1

(I + F )−1F

F (I + F )−1

F 1/2(I + F )−1F 1/2

(I + F )−1/2F (I + F )−1/2

(8)

In the singular case, not all the transforms are applicable, as U ≥ 0 and F ≥ 0.
Thus, we obtain the following result.

Theorem 1 i) Assume F ∼ BIIm(q, r/2, s/2) and let U = (I+F )−1F . Then
U ∼ BIm(q, r/2, s/2).

ii) Assume U ∼ BIm(q, r/2, s/2) and let F = (I − U)−1U . Then F ∼
BIIm(q, r/2, s/2).

To prove this result, we must determine the Jacobians, with respect to the
Hausdorff measure, of the singular transforms U = (I + F )−1F and F =
(I − U)−1U , where F, U ∈ S+

m(r).

Lemma 2 Let F, U ∈ S+
m(r). Then

i) if U = (I + F )−1F

(dU) = |Im + F |(m+1−r)/2|Ir + Q|−(m+1−r)/2(dF ),
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where F = H1QH ′
1 is the nonsingular part of the spectral decomposition of

the matrix F , with H1 ∈ Vr,m and Q = diag(f1, . . . , fr), f1 > · · · > fr > 0.
ii) if F = (I − U)−1U

(dF ) = |Im − U |(m+1−r)/2|Ir − L|−(m+1−r)/2(dU),

with U = H1LH ′
1, H1 ∈ Vr,m and L = diag(u1, . . . , ur), 1 > u1 > · · · > ur >

0.

Proof. To prove this result, we proceed as in Dı́az-Garćıa and Gutiérrez
(1997).

Let h and t be the density functions of F and U , respectively.

i) Let U = (I + F )−1F . Then, by the change of variable theorem

dHF (F ) = tU((I + F )−1F )(d(I + F )−1F )

= tU((I + F )−1F )|J |(dF ), (9)

where |J | denotes the Jacobian. Now considerer the complete spectral decom-
position

U = H




L 0

0 0


 H ′,

with H = (H1H2) orthogonal matrix, where H2 ∈ Vm−r,m a function of H1.
Thus




L 0

0 0


 = H ′UH = H ′(I + F )−1FH = H ′(I + F )−1HH ′FH

= (HH ′ + HFH ′)−1H ′FH =


I +




Q 0

0 0







−1 


Q 0

0 0




=


I +




Q 0

0 0







+ 


Q 0

0 0


 =




(I + Q−1)−1 0

0 0


 .

where C+ denotes the Moore-Penrose inverse of C. From this, L = (I+Q−1)−1.
Thus by (2) and (9) we have

dHF (F ) = c|(I + Q−1)−1|(r−m−1)/2|I − (I + F )−1F |(s−m−1)/2|J |(dF )

= c|Q|(r−m−1)/2|I + F |−(r+s)/2|I + F |−(m+1−r)/2

|I + Q|−(r−m−1)/2|J |(dF ).
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But by (6)
dGF (F ) = c|Q|(r−m−1)/2|I + F |−(r+s)/2(dF ).

Thus

1 =
dGF (F )

dHF (F )
= |I + F |−(m+1−r)/2|I + Q|−(r−m−1)/2|J |(dF ).

from which the required result is obtained.

ii) The proof is parallel to that given in i), simply by proceeding as in i),
Q = (I − L)−1LQ = (I − L)−1L. ¤

Now, the proof of Theorem 1 is immediate by applying Lemma 2.

3 Other results

An alternative definition of the matrix variate beta type I distribution was pro-
posed by Khatri (1970), see also Srivastava and Khatri (1979, pp. 94-95), as fol-
lows. Assume that B ∼ Wm(s, I) and that A = Y ′Y where Y ∼ Nr×m(0, Ir ⊗
Im), m > r, independently of B. Then U1 = Y (Y ′Y +B)−1Y ′ = Y (A+B)−1Y ′.
Moreover, U1 ∼ BIr(m/2, (s+ r−m)/2). However, observe that in the central
case its properties and associated distributions can be obtained from Defini-
tion (1) by replacing m by r, r by m and s by s + r −m, i.e., by making the
substitutions

m → r, r → m, s → s + r −m, (10)

see Srivastava and Khatri (1979, p. 96) or Muirhead (1982, eq. (7), p. 455).
Note that in this definition, we are considering the singular case, as r < m;
however, in this case the density is found with respect to the Lebesgue measure
(dU1), defined with respect to the space of dimension r of the positive defined
matrices U1 : r×r. Without a doubt, the matrices U and U1 are not the same,
indeed they are not even of the same order, but where they do coincide is in
their eigenvalues, and thus the density of the eigenvalues under both matrices
must be the same. An analogous definition has been proposed by James (1964)
for the case of the matrix variate beta type II, see also Muirhead (1982).

Recently, the noncentral singular and doubly noncentral singular cases of the
matrix variate beta types I and II have been studied by Dı́az-Garćıa and
Gutiérrez-Jáimez (2006). Thus, we can now compare the corresponding joint
densities of the eigenvalues obtained via the singular densities and via the
ideas of Khatri (1970) and James (1964) for matrix variate beta types I and
II, respectively.
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To determine such an equivalence (equality) between the joint densities of the
eigenvalues of the matrix variate beta type I and II in the noncentral case, see
Khatri (1970), James (1964) and Dı́az-Garćıa and Gutiérrez-Jáimez (2006); we
need only consider the following result, as the only difference between these
densities is in the constant, and specifically, in the quotient of the multivariate
gamma functions.

Lemma 3 Assume that m < k < n, then

i) Γm[n/2] = πk(m−k)/2Γm[(n−m + k)/2]Γm−k[n/2].

ii) Γm[n/2] = πk(m−k)/2Γk[n/2]Γm−k[(n− k)/2].

Proof.

i) Given in Muirhead (1982, p. 95).
ii) Note, simply, that

Γm[n/2] = πm(m−1)/4
m∏

i=1

Γ[(n− i + 1)/2]

= πk(k−1)/4

(
k∏

i=1

Γ[(n− i + 1)/2]

)
π(m−k)(m−k−1)/4




m∏

i=k+1

Γ[(n− i + 1)/2]


 πk(m−k)/2

= πk(k−1)/4

(
k∏

i=1

Γ[(n− i + 1)/2]

)
π(m−k)(m−k−1)/4




m−k∏

j=1

Γ[(n− k − j + 1)/2]


 πk(m−k)/2

= Γm[n/2] = πk(m−k)/2Γk[n/2]Γm−k[(n− k)/2] ¤

4 Conclusions

In this study we establish the transforms and the corresponding Jacobians
with respect to the Hausdorff measure relating the matrix variate beta type I
and II distributions.

The equality between the joint densities of the eigenvalues of the matrix variate
beta types I and II obtained via the theory of singular distributions and the
approaches proposed by Khatri (1970) and James (1964) is established.
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